
Technical White Paper:


Adaptative Memory Management with 

Shenandoah GC (Garbage Collector)

www.logpoint.com



www.logpoint.com

Abstract

This White Paper discusses the integration and utilization of the Shenandoah garbage collector for Java services 

within the Logpoint framework. It outlines the advantages of enabling the Shenandoah Garbage collection in 

Logpoint, while also providing insights on its proper usage. Shenandoah is an advanced garbage collector specifically 

designed for dynamic workloads. The introduction of Shenandoah aims to simplify the tuning of Logpoint services 

and ensure optimal system performance and stability. This White paper addresses a common challenge faced by 

System Administrators when manually adjusting heap settings, during periods of high demand or sudden spikes in 

activity.


 Introductio

 Shenandoah Garbage Collector Overvie

 Challenges with Previous Garbage Collecto

 Shenandoah in Actio

 Benefits for System Administrator

 Seamless Usage of Shenandoa

 Recommendation

 Observed Improvements

Table of contents



Introduction
The Logpoint platform relies on Java services to carry out its essential functions, such as storing logs and generating 

analytics that include alerts, dashboards, and search features. As Java is a garbage collection language, it requires 

careful tuning of Logpoint’s Java services to adjust the heap sizes dynamically based on the current workload. 

Managing heap size efficiently is critical since overallocation can lead to unnecessary memory reservations by some 

services, which can prevent the proper functioning of others that need resources.



On the other hand, under-allocation can lead to inadequate heap sizes, causing Java services to experience extended 

pause times during full garbage collection. This can introduce latency in search and log ingestion and in extreme 

cases, it can create severely impact on log collection and analytics. The significant challenge System Administrators 

face is addressing these issues to ensure optimal system resource utilization and stability.

Shenandoah Garbage Collector 
Overview
Shenandoah is a garbage collector designed to work seamlessly in systems with dynamic workloads. It distinguishes 

itself by reducing pause times, making it particularly useful in applications where responsiveness is critical. 

Shenandoah's integration with Logpoint's Java services reduces the need for manual tuning and re-tuning heap size.



The Shenandoah garbage collector will automatically use the necessary heap during spikes and return memory to the 

operating system if there is no load in services, allowing other services to make the best use of the available memory 

resources. The behavior of the Shenandoah garbage collector alleviates the need for manual tuning and the 

challenge of determining the optimal heap size.

02www.logpoint.com



Challenges with previous Garbage 
Collector

 Regular, manual adjustment to Java services heap size

 Reduced performance of Logpoint due to long pause time

 Significant decrease in throughput of specific services due to garbage collection loops, affecting log collection and 

analytics pipeline

 Overall system performance impact when more fine-tuning is during periods of high- demand or when there are 

sudden spikes

 Unnecessary memory reservation with previous garbage collection method as it infrequently releases memory 

back to the operating system, like during full GC.

03www.logpoint.com

Shenandoah in action
There are multiple advantages introduced through the integration of Shenandoah into Logpoint services

 Ability to concurrently perform garbage collection while the application is running ensures system responsiveness 

even during peak or burst loads

 Shenandoah's reduced pause time ensures optimal application performance

 Returning memory to the operating system ensures optimal resource allocation for other services

 After Shenandoah GC integration, Java services no longer require manual heap size adjustment.



04www.logpoint.com

Seamless usage of Shenandoah
The Shenandoah garbage collector can be easily enabled for all core Logpoint services with a single command 

accessible to the li-admin user. To do so, follow these steps:

 Go to the Logpoint console or create a ssh-session using the li-admin user

 Run the command shenandoah_manager enable.



Benefits for system administrators
Shenandoah significantly impacts System Administrators who manage Logpoint services. The automated and 

concurrent garbage collection reduces the need for frequent manual adjustments of heap size, thus simplifying the 

tuning process. This leads to improved Logpoint stability and reliability, especially during resource-intensive and 

dynamic workloads.


Recommendations
We recommend using the Shenandoah garbage collector only in systems with low CPU utilization or a low load 

average. Before enabling Shenandoah, check Logpoint's CPU utilization under System -> System Monitor. If CPU 

utilization exceeds 85%, it's not advisable to enable Shenandoah. After enabling Shenandoah, monitor your system's 

memory utilization, CPU utilization, and load average using the system monitor dashboard for a few days. If you 

observe any unusual behaviour, please revert to the previous garbage collector. Switching is this simple:

 Go to the Logpoint console or create a ssh-session using the li-admin user

 Run command shenandoah_manager disable.





Recommendations
We recommend using the Shenandoah garbage collector only in systems with low CPU utilization or a low load 

average. Before enabling Shenandoah, check Logpoint's CPU utilization under System -> System Monitor. If CPU 

utilization exceeds 85%, it's not advisable to enable Shenandoah. After enabling Shenandoah, monitor your system's 

memory utilization, CPU utilization, and load average using the system monitor dashboard for a few days. If you 

observe any unusual behaviour, please revert to the previous garbage collector. Switching is this simple:

 Go to the Logpoint console or create a ssh-session using the li-admin user

 Run command shenandoah_manager disable.



Observed improvements
After We enabled Shenandoah GC in our Logpoint environments, what we found is shown in the following images:

 Go to the Logpoint console or create a ssh-session using the li-admin user

 Run command shenandoah_manager disable.



Recommendations
We recommend using the Shenandoah garbage collector only in systems with low CPU utilization or a low load 

average. Before enabling Shenandoah, check Logpoint's CPU utilization under System -> System Monitor. If CPU 

utilization exceeds 85%, it's not advisable to enable Shenandoah. After enabling Shenandoah, monitor your system's 

memory utilization, CPU utilization, and load average using the system monitor dashboard for a few days. If you 

observe any unusual behaviour, please revert to the previous garbage collector. Switching is this simple:

 Go to the Logpoint console or create a ssh-session using the li-admin user

 Run command shenandoah_manager disable.



Observed improvements
After We enabled Shenandoah GC in our Logpoint environments, what we found is shown in the following images:

 Go to the Logpoint console or create a ssh-session using the li-admin user

 Run command shenandoah_manager disable.



Memory Usage (Previous Garbage Collection Method)



Observed improvements
After enabling Shenandoah GC in our Logpoint environments, what we found is shown in the following image:

Fig. 1: Memory usage of core Java services inside Logpoint for one of our Logpoint environments with previous garbage collection method.



Memory Usage (Previous Garbage Collection Method)



Fig. 2: Memory usage of core Java services inside Logpoint for one of our Logpoint environment after enabling Shenandoah.



05www.logpoint.com



Recommendations
We recommend using the Shenandoah garbage collector only in systems with low CPU utilization or a low load 

average. Before enabling Shenandoah, check Logpoint's CPU utilization under System -> System Monitor. If CPU 

utilization exceeds 85%, it's not advisable to enable Shenandoah. After enabling Shenandoah, monitor your system's 

memory utilizationCPU utilization, and load average using the system monitor dashboard for a few days. If you 

observe any unusual behaviour, please revert to the previous garbage collector. Switching is this simple:

 Go to the Logpoint console or create a ssh-session using the li-admin user

 Run command shenandoah_manager disable.



Observed improvements
After We enabled Shenandoah GC in our Logpoint environments, what we found is shown in the following images:

 Go to the Logpoint console or create a ssh-session using the li-admin user

 Run command shenandoah_manager disable.



 Go to the Logpoint console or create a ssh-session using the li-admin user

 Run command shenandoah_manager disable.



Obsered improvements
After We enabled Shenandoah GC in our Logpoint environments, what we found is shown in the following images:

 Go to the Logpoint console or create a ssh-session using the li-admin user

 Run command shenandoah_manager disable.



Fig. 3: This is the memory usage pattern of a service before and after enabling the Shenandoah (Shenandoah was enabled on 9/29).


Zooming into the memory usage pattern of one Service before and after enabling Shenandoah:



We can see that prior to 9/29 the memory was reserved by the service, and it wasn’t released back to OS. After 

enabling Shenandoah, we can see memory is being used where it is needed and is being released back to the OS 

accordingly.


06www.logpoint.com

Adopting the Shenandoah garbage collector is a significant step forward in optimizing Logpoint's Java services. It 

addresses the challenges associated with manual heap tuning in previous version of Logpoint and empowers System 

Administrators to ensure peak system performance and stability. By embracing solutions like Shenandoah, Logpoint 

underscores its commitment to innovation and delivering enhanced user value as it continues to evolve.



Note: The implementation behaviour of previous garbage collection (G1GC) mentioned in this white paper is of 

Logpoint version 7.4.0 and before.


Conclusion



L O G P O I N T . C O M


