
www.logpoint.com

Dynamic Link Dazzle: 
Unveiling the Dark Side of DLLs

Emerging Threats Protection Report

Cybersecurity defenses must constantly adapt to fight emerging attack strategies in today's rapidly changing threat

landscape. One such approach, DLL side-loading, poses a substantial difficulty for businesses. Attackers might

secretly inject malicious code into legal apps by exploiting weaknesses in how dynamic-link libraries (DLLs) are

loaded, bypassing traditional security measures. As defenders, it is imperative to remain vigilant and proactive in

identifying and mitigating such threats.

This study provides a complete guide to identifying and mitigating the dangers associated with DLL side-loading

attacks on KeyScrambler.exe, which has reportedly been abused by threat actors like Chinese APTs and Darkgate

malware recently. Organizations may strengthen their defenses and reduce the potential effect of sophisticated

assaults by carefully analyzing common signs and detection procedures. Defenders can improve their detection and

response capabilities by using resources like the Hijack Libs repository, which has a curated list of known DLL

hijacking vulnerabilities. In today's increasingly hostile digital ecosystem, enterprises may successfully defend their

critical assets and prevent the attempts of criminal actors by taking a proactive approach and employing

comprehensive security measures.

Foreword

www.logpoint.com

Swachchhanda Shrawan Poudel

Logpoint Security Research

Swachchhanda Shrawan Poudel is a cybersecurity professional specializing in purple

teaming, reverse engineering, and malware analysis. Currently a Security Researcher at

Logpoint Security Research, he leads the Emerging Threat Protection initiative. His focus

includes detection engineering, threat hunting, and remediation, with a special passion

for crafting effective detection rules, threat reports and playbooks.

https://thehackernews.com/2024/03/two-chinese-apt-groups-ramp-up-cyber.html
https://hijacklibs.net

Table of contents

Foreword and Author

About Emerging Threat Protection

Introduction to DLL

 Purpose of DLL

 Attacks Around DLLs

DLL side-loading attack

 Why DLL Side Loading

 What about DLL side-loading?

Analyzing KeyScrambler.exe for DLL side-loading Vulnerabilities

Analysis of Processes Sequence from Logpoint Converged SIEM

Detection of DLL side-loading through Logpoint Converged SIEM

Recommendation

Conclusion

01

02

03

03

04

04

04

05

07

15

17

19

20

www.logpoint.com

The cybersecurity threat landscape continuously changes while new risks and threats are constantly discovered.

Only some organizations have enough resources or the know-how to deal with evolving threats.

Emerging Threats Protection is a managed service provided by a Logpoint team of highly skilled security

researchers who are experts in threat intelligence and incident response. Our team informs you of the latest

threats and provides custom detection rules and tailor-made playbooks to help you investigate and mitigate

emerging incidents.

**All new detection rules are available as part of Logpoint’s latest release and through the Logpoint Help

Center. Customized investigation and response playbooks are available to all Logpoint Emerging Threats

Protection customers.

About Logpoint Emerging Threats Protection

https://servicedesk.logpoint.com/hc/en-us/articles/115003928409
https://servicedesk.logpoint.com/hc/en-us/articles/115003928409

03www.logpoint.com

Introduction to DLLs
In Windows, a dynamic-link library (DLL) is a component that contains functions and data that other modules, such as

programs or DLLs, can use. DLLs provide two sorts of functions: exported functions, which are intended for usage by

other modules as well as within the DLL where they are defined, and internal functions, which are maintained within

the DLL and are not intended for external access.

Purpose of DLLs

Microsoft introduced DLLs into the Windows operating system to allow program modularization, making it easy to

update and reuse their functionality. This approach helps reduce memory overhead, as multiple applications can

share the same DLL code. At the same time, each gets its copy of DLL data. The Windows Application Programming

Interface (API) is also implemented through a series of DLLs, so any process that utilizes the Windows API employs

dynamic linking.

Below is a rundown of the incident, potential threats, and how to detect any potential attacks and proactively defend

using Logpoint Converged SIEM capabilities.

PHASE 1 PHASE 2 PHASE 3 PHASE 4

 Research for emerging

threats such as malware

families, threat actors and

vulnerabilitie

 Data retrieval e.g.,

malware samples, IOCs,

and TTP

 Analysis of the collected

data and malware and,

tracking of threat actors’

activitie

 Creation and update

analytics and playbooks

 Writing of ETP report

 Publishing of report Continuous monitoring

for other emerging

threats to create next ETP

report

04www.logpoint.com

Attacks Around DLLs

Having understood this much about DLLs, it must be understandable how significant they are in the Windows

ecosystem. There is a predefined order in which Windows searches for and loads DLLs when a program is executed,

which is abused by attack techniques like DLL Hijacking. When a program requires a DLL, Windows searches for it in

certain areas, such as the application's directory, system directories, and directories specified in the system's PATH

environment variable. Microsoft has a dedicated page describing Dynamic-link library search order.

The fundamental reason for DLL hijacking is that attackers can influence the search process to fool software into

loading a malicious DLL instead of a genuine one. They can accomplish this by installing a malicious DLL in one of the

folders searched by Windows, with the same name as the DLL the program expects to discover. When the software

attempts to load the DLL, it unintentionally loads the malicious one, letting the attacker execute their code within the

context of the intended program.
 

This vulnerability may be abused in various methods, including phishing attacks, social engineering, and leveraging

poor file permissions on folders containing DLLs. So it's not necessary because of how the DLL is constructed but

how Windows searches for and loads DLLs, which attackers might use to inject malicious code into everyday

processes. The executable code of a DLL runs in the memory space of the calling program and has the same access

permissions. In this case, even if the program is legitimate, if we can replace the DLL in the path where the program

searches, malicious code can be executed within the context of a legitimate, trusted process; thus, such behaviors

are rarely flagged by security measures.

DLL side-loading attacks
DLL side-loading is a technique adversaries use to execute malicious payloads by leveraging a legitimate application's

execution process. It involves placing the legitimate-looking malicious payload(s), i.e., DLL file, in the location where

the application loads it from, commonly by positioning it alongside the victim application. When the legitimate

program is executed, the planted DLL is side-loaded as part of its execution process. This method allows adversaries

to mask their actions under a trusted process, potentially avoiding detection, as the benign executable used for side-

loading may not raise suspicion during delivery or execution.

Why DLL Side Loading?

DLL sideloading is lucrative for attackers due to several factors:

 Unlike other attack tactics, DLL sideloading requires minimal effort from the attacker.

Instead of identifying and exploiting specific software vulnerabilities, attackers may store a malicious DLL in a

location where the program automatically loads it.

 Many prominent software programs are susceptible to DLL sideloading. These

programs are widely used across sectors and are frequently found on many platforms within a company. Exploiting

flaws in widely used software can lead to many possible targets for attackers.

 DLL sideloading might be challenging to detect since it runs in the context of trusted processes

in the targeted software. Security checks may not identify it as suspicious because the action is regular behavior from

the program's perspective, which enables attackers to run their malware undetected for lengthy periods.

Minimal Effort Required:

Widespread Software Usage:

Low Detection Rates:

https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order

05www.logpoint.com

Opportunity for Persistence:

Potential for Privilege Escalation:

 Once a malicious DLL is loaded into a trusted process via DLL sideloading, attackers can

get a foothold in the target system. They can utilize this access to sustain persistence, carry out more assaults, or

exfiltrate sensitive data over time without being noticed.

 DLL sideloading can also escalate privilege within a system. By loading a malicious

DLL into a process with elevated privileges, attackers can get more access to system resources and carry out more

severe activities, such as installing persistent backdoors or stealing sensitive data.

What about DLL side-loading?

On April 2, Max_Malyutin tweeted, discussing a #DarkGate New Infection #TTPs. The shared sample was a VBS script

that, upon execution, downloads and executes the next-stage infection. The second-stage payload consists of a

legitimate binary ‘KeyScramblerLogon.exe’ and a malicious DLL file ‘KeyScramblerIE.dll.’ The malware then side-loads

this malicious DLL (KeyScramblerIE.dll) using ‘KeyScramblerLogon.exe,’ a signed binary from QFX Software

Corporation.

https://twitter.com/Max_Mal_/status/1775222576639291859
https://twitter.com/hashtag/DarkGate?src=hashtag_click
https://twitter.com/hashtag/TTPs?src=hashtag_click
https://bazaar.abuse.ch/sample/5cb9876681f78d3ee8a01a5aaa5d38b05ec81edc48b09e3865b75c49a2187831/

06www.logpoint.com

Intrigued by the side-loading technique, a Google search was conducted with the keyword 'KeyScrambler.exe side-

loading' to explore whether similar side-loading attempts had been observed in other malware variants or threat

actor intrusions. Interestingly, various reports were found about DarkGate and Chinese APT groups exhibiting similar

side-loading activity. This technique is quite common among threat actors.

Further piquing interest, an attempt was made to understand more about KeyScrambler.exe and KeyScramblerIE.dll.

The research discovered that KeyScrambler is a security program designed to encrypt keystrokes in real-time,

protecting against keylogging malware and safeguarding sensitive user information. KeyScrambler operates by

intercepting keystrokes at the kernel level before they reach other applications, encrypting and decrypting them

within the intended application to prevent sensitive information from being stolen by malicious software running on

the system.

Given that KeyScrambler is a security program, one would not expect this application to be used maliciously. It raises

the question of what threat actors might have considered while weaponizing their malicious ‘KeyScramblerIE.dll’ for

potential side-loading through the legitimate KeyScrambler.exe.

https://www.qfxsoftware.com/

07www.logpoint.com

Analyzing KeyScrambler.exe for DLL
side-loading Vulnerabilities
When KeyScrambler.exe (SHA-256: F1575259753F52AAABBD6BAAD3069605D764761C1DA92E402F3E781ED3CF7CEA) is

installed with default options, it resides within the '%PROGRAMFILES%\KeyScrambler' directory. This directory houses

the latest version, 3.18, released on August 15, 2023. The installation was done using a free version of the

KeyScrambler installer (KeyScrambler_Setup.exe), with a SHA256 hash of

BE6FA1F72333D853E2ACFC95B4ED46B59ECC45A3FBFF1B7DAEA44DBE15A9861A

To test whether this KeyScrambler.exe is susceptible to DLL side-loading, it was moved to the desktop (C:

\Users\xxxxx\Desktop) and executed. The screenshot below shows the error message: "The code execution cannot

proceed because KeyScramblerIE.dll was not found. Reinstalling the program may help this problem."

https://www.virustotal.com/gui/file/f1575259753f52aaabbd6baad3069605d764761c1da92e402f3e781ed3cf7cea
https://www.virustotal.com/gui/file/be6fa1f72333d853e2acfc95b4ed46b59ecc45a3fbff1b7daea44dbe15a9861a

08www.logpoint.com

The binary is looking for the DLL named 'KeyScramblerIE.dll’

(SHA256: 19D8FD17791A995224D0CD32B1FD2857CC2C652BDD4F9CFDB3266F0F77C135BD), which was previously

located in the same directory as KeyScrambler.exe.

https://www.virustotal.com/gui/file/19d8fd17791a995224d0cd32b1fd2857cc2c652bdd4f9cfdb3266f0f77c135bd

09www.logpoint.com

Verifying if an executable is vulnerable to DLL sideloading involves monitoring its file system activity using tools

like Microsoft Sysinternals Process Monitor (ProcMon). By observing the binary's behavior, particularly its attempts to

load DLLs, one can determine if it searches for the expected DLL in the same directory as itself. Suppose the binary

follows this behavior and looks for the DLL in its directory and other locations. In that case, it may be susceptible to

DLL sideloading.

Microsoft Sysinternals Process Monitor (ProcMon) monitored the file system activity following the same steps. The

filter settings were configured to capture events related to the KeyScrambler.exe process.

Subsequently, was executed from its unoriginal location, the desktop folder. Its attempts to

locate the KeyScramblerIE.dll in the same directory and multiple additional locations resulted in ‘Name Not Found,’ as

observed in ProcMon.

KeyScramblerIE.dll

https://learn.microsoft.com/en-us/sysinternals/downloads/procmon

10www.logpoint.com

Afterward, a random Dll masquerading as KeyScramblerIE.dll was copied to the desktop, and the KeyScrambler.exe

was executed again while capturing process events from ProcMon to analyze its behavior. After that application was

executed, the Application Error message was observed, which said The application could not start correctly

(0xc000007b). Click OK to close the application.

The executable could find the required DLL. Still, it might have displayed this error message since it didn’t have the

same exports as legitimate KeyScramblerIE.dll. Successful image load events for this DLL file were also observed via

ProcMonEvents.

Even though we successfully imported the DLL through the process, it didn't work as expected. Is it normal

behavior, and why?

→ While you may have successfully replaced a random DLL with the name expected by the executable and even

ensured the program loaded it, there are several reasons why the code in the DLL may not have worked as expected

→ The original DLL expected by the executable may have specific export functions that your randomly replaced DLL

does not replicate. Even if the DLL is properly loaded, if it lacks the required functionality or structure, the program

may be unable to use it efficiently

→ If the DLL's functions require specific parameters or input data in a particular format, your substituted DLL may

not offer them appropriately. When the software attempts to call DLL routines, it may encounter problems or

unexpected behavior

→ The updated DLL may rely on libraries or resources that are either missing or incompatible with the environment

in which the application is operating. Even if the application successfully loads the DLL, it may fail or act

unexpectedly.

 Export Functionality mismatch

 Function Parameters

 Dependency Issues

11www.logpoint.com

 Error Handling

 Security Features:

→ The original application may have error handling features to identify DLL errors, such as erroneous function

signatures or unusual behavior. Suppose the modified DLL fails to satisfy the program's requirements. In that case,

error handling procedures may be triggered, preventing the code from running as intended

→ Some programs may use security features or integrity checks to verify the authenticity and integrity of loaded

DLLs. If the replacement DLL fails these tests, the program may refuse to execute its instructions or terminate

suddenly.

Overall, while DLL sideloading can sometimes work to load a replaced DLL into a program, ensuring that the

replacement DLL behaves correctly and provides the expected functionality necessitates careful consideration of

several factors, including compatibility, dependencies, and error handling.

Determine the KeyScramblerIE.dl Exports

When weaponizing a custom DLL, observing the exported functions of KeyScramblerIE.dll and the imported

functions through legitimate KeyScrambler.exe is essential. This observation enables us to use the names of those

functions in the new custom payload for DLL sideloading.

Through the DLL Export Viewer, the 13 different functions were observed as exports of KeyScramblerIE.dll.

https://www.nirsoft.net/utils/dll_export_viewer.html

12www.logpoint.com

Afterward, x32dbg was spawned, and the KeyScrambler.exe process was attached. Then, the import table of

Keyscrambler.exe was observed to check which functions it had imported from the KeyScramblerIE.dll.

The Import table observed from Virustotal also indicates the same result.

https://www.virustotal.com/gui/file/f1575259753f52aaabbd6baad3069605d764761c1da92e402f3e781ed3cf7cea/details

13www.logpoint.com

After that, a custom DLL was created containing all the exports as the original DLL but containing a code to execute

the calculator. Here are the details of the custom-made DLL.

The exports of this DLL were also verified using the DLL Export Viewer.

https://www.nirsoft.net/utils/dll_export_viewer.html

14www.logpoint.com

This newly created DLL's functions' addresses reference the exported functions from the legitimate

"KeyScramblerIE.dll." It uses a technique called DLL proxying, which restores the binary's native DLL execution flow

so that it is not corrupted.

To understand more about DLL proxying, here is an excellent example from ired.team.

For example, suppose a valid DLL named "legit.dll" gets hijacked via DLL proxying. The attacker renames the genuine

DLL to "legit1.dll" before replacing it with a malicious DLL. This malicious DLL exports the same functionalities as

"legit1.dll".

When an application uses a function from "legit.dll," such as "exportedFunction1", the following sequence of events

occurs:

"legit.dll" is loaded into the caller process and runs arbitrary malicious code, such as connecting to a Command and

Control (C2) server.

"legit.dll" directs the call to "exportedFunction1" in "legit1.dll".

"legit1.dll" runs the "exportedFunction1" as intended.

It allows the attacker to keep the functionality of the genuine DLL while still running extra malicious code, making it a

covert and effective strategy for compromising systems.

After that, the original KeyScrambler.exe and forged KeyScramblerIE.dll files were copied to the desktop, and the

KeyScrambler.exe was executed. We had configured the command "cmd.exe \c calc.exe "inside the forged

KeyScramblerIE.dll, so we were expecting the KeyScrambler.exe to spawn cmd.exe, which in turn ran calc.exe. And as

per the expectation, we observed these processes being created as the predecessor processes.

https://www.ired.team/offensive-security/persistence/dll-proxying-for-persistence

15www.logpoint.com

Analysis of Processes Sequence
from Logpoint Converged SIEM
After the successful execution of DLL side-loading, the analysis of processes from Logpoint’s new plugin Process Tree

reveals the following sequence:

 KeyScrambler.exe:

This process successfully loaded the malicious KeyScramblerIE.dll that had been planted. It indicates that the DLL

side-loading technique effectively injects the malicious DLL into the legitimate process.

 cmd.exe:

A child process of KeyScrambler.exe, cmd.exe, was spawned. It suggests that the malicious code injected via the DLL

side-loading may have initiated the command prompt to execute further commands or perform additional actions on

the system.

16www.logpoint.com

 calc.exe:

Subsequently, the cmd.exe process spawned calc.exe. This indicates that the command prompt was used to execute

commands that led to the spawning of the calculator application, potentially as a test or as part of further malicious

activities.

17www.logpoint.com

Detection of DLL side-loading
through Logpoint Converged SIEM
While DLL side-loading remains a prevalent attack technique, it's only partially immune from detection. Analysts can

leverage certain factors to identify suspicious behavior indicative of DLL side-loading

If a signed Portable Executable (PE) file loads unsigned DLLs, it's worth investigating further. Legitimate files are

often signed so that unsigned DLLs can be a red flag

Watch for instances where a PE file loads a DLL from unexpected locations. Legitimate applications typically load

DLLs from specific directories, so loading from elsewhere could indicate malicious behavior.

Keeping these things in mind, we generated a query leveraging the WindowsSysmon image loads event. Analysts can

use it to detect potential DLL side-loading of KeyScramblerIE.dll using the legitimate KeyScrambler.exe file.

 Looks for PE loading the unsigned DLLs

 Suspicious DLL paths

norm_id=WindowsSysmon event_id=7

"process" IN ["*\KeyScrambler.exe", "*\KeyScramblerLogon.exe'"]

"image"="*\KeyScramblerIE.dll"

(-("process" IN ["C:\Program Files (x86)\KeyScrambler*", "C:\Program Files\KeyScrambler*"]

image IN ["C:\Program Files (x86)\KeyScrambler*", "C:\Program Files\KeyScrambler*"])

OR

-(status="valid" signature="QFX Software Corporation"))

1

2

3

4

5

6

7

18www.logpoint.com

norm_id="WindowsSysmon" event_id=1

"parent_process"="*\KeyScrambler.exe"

"process" IN ["*\cmd.exe", "*\cscript.exe", "*\mshta.exe", "*\powershell.exe", "*\pwsh.exe",

"*\regsvr32.exe", "*\rundll32.exe", "*\wscript.exe"]

OR "file" IN ["Cmd.Exe", "cscript.exe", "mshta.exe", "PowerShell.EXE", "pwsh.dll",

"regsvr32.exe", "RUNDLL32.EXE", "wscript.exe"]

1

2

3

4

The above rule is crafted to detect potential instances of DLL side-loading through legitimate KeyScrambler.exe

executables. At first, it checks if the KeyScrambler process is loading a DLL with a filename ending in

"KeyScramblerIE.dll. To minimize false positives, the rule filters out events occurring within known legitimate

installation paths of the KeyScrambler software, such as "C:\Program Files (x86)\KeyScrambler" and "C:\Program

Files\KeyScrambler." Furthermore, it verifies the digital signature associated with the loaded image, ensuring it

belongs to "QFX Software Corporation," the legitimate vendor of KeyScrambler. Alerts are made if there is some

legitimate path mismatch or an unsigned DLL is being loaded. This rule only detects potential KeyScrambler DLL

side-loading but doesn't give information on post-exploitation. Analysts can look for suspicious child processes of

KeyScrambler.exe (which is not a typical scenario) through the following query that utilizes the Sysmon process

creation event.

19www.logpoint.com

Implement Application whitelisting

Regular Software Updates and Patch Management 

Monitor System Logs 

Leverage Hijack Libs Repository 

Endpoint Security Solutions 

Restrict the execution of unauthorized executables, including those involved in DLL side-loading attempts.

Application whitelisting ensures that only approved software can run, reducing the attack surface for DLL side-

loading.

Keep the software and all associated components updated with the latest security patches. It helps address known

vulnerabilities that threat actors may exploit for any known vulnerabilities.  

Monitor system logs, especially image load events, for suspicious activities related to DLL loading. Implementing

specific detection rules, such as the alert rule outlined in this report, can aid in the early detection of DLL side-loading

attempts.

To enhance security measures, utilize the Hijack Libs repository, which provides insights into potentially vulnerable

DLLs targeted in DLL Hijacking attacks. If any executable listed in Hijack Libs is found within your enterprise,

promptly harden or block the process to mitigate the risk of DLL side-loading attacks on vulnerable executables and

critical assets.

Deploy endpoint security solutions with advanced threat detection capabilities, such as the Logpoint Converged SIEM

platform, including behavior-based analysis and anomaly detection. These solutions can help identify and mitigate

DLL side-loading attempts in real-time.

Recommendation

https://hijacklibs.net/

20www.logpoint.com

In conclusion, the report highlights the critical threat posed by DLL side-loading, particularly in the context of the

KeyScrambler software ecosystem. The detection and remediation of such malicious activity are paramount to safeguarding

organizational assets and maintaining operational integrity. Leveraging Logpoint Converged SIEM, organizations can

effectively detect and respond to DLL side-loading attempts involving KeyScrambler.exe.

By implementing tailored detection rules, such as the hunting rule outlined in this report, organizations can proactively

identify potential instances of DLL side-loading and swiftly initiate remediation measures. Logpoint Converged SIEM's

robust capabilities enable real-time monitoring of system activities, facilitating rapid response to security incidents.

Furthermore, integrating threat intelligence feeds and automated response playbook workflows within Logpoint Converged

SIEM enhances the efficacy of detection and remediation efforts. This holistic approach empowers organizations to mitigate

the risks associated with DLL side-loading and fortify their cybersecurity against evolving threats.

In summary, the combination of proactive detection, swift response, and comprehensive remediation facilitated by

Logpoint Converged SIEM provides organizations with the tools to effectively combat DLL side-loading attacks targeting

KeyScrambler.exe, safeguarding critical assets and ensuring operational continuity.

Conclusion

www.logpoint.com

About Logpoint
Logpoint is the creator of a reliable, innovative cybersecurity operations platform — empowering organizations worldwide

to thrive in a world of evolving threats.

By combining sophisticated technology and a profound understanding of customer challenges, Logpoint bolsters security

teams’ capabilities while helping them combat current and future threats.

Logpoint offers SIEM, UEBA, and SOAR technologies in a complete platform that efficiently detects threats, minimizes false

positives, autonomously prioritizes risks, responds to incidents, and much more.

Headquartered in Copenhagen, Denmark, with offices around the world, Logpoint is a multinational, multicultural, and

inclusive company.

For more information visit www.logpoint.com

https://www.logpoint.com/en/

